Metamath Proof Explorer


Theorem rmoeq1

Description: Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) Avoid ax-8 . (Revised by Wolf Lammen, 12-Mar-2025)

Ref Expression
Assertion rmoeq1 A=B*xAφ*xBφ

Proof

Step Hyp Ref Expression
1 dfcleq A=BxxAxB
2 1 biimpi A=BxxAxB
3 anbi1 xAxBxAφxBφ
4 3 imbi1d xAxBxAφx=zxBφx=z
5 4 alimi xxAxBxxAφx=zxBφx=z
6 albi xxAφx=zxBφx=zxxAφx=zxxBφx=z
7 2 5 6 3syl A=BxxAφx=zxxBφx=z
8 7 exbidv A=BzxxAφx=zzxxBφx=z
9 df-mo *xxAφzxxAφx=z
10 df-mo *xxBφzxxBφx=z
11 8 9 10 3bitr4g A=B*xxAφ*xxBφ
12 df-rmo *xAφ*xxAφ
13 df-rmo *xBφ*xxBφ
14 11 12 13 3bitr4g A=B*xAφ*xBφ