Metamath Proof Explorer


Theorem rmoeqbii

Description: Equality inference for restricted at-most-one quantifier. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses rmoeqbii.1 A = B
rmoeqbii.2 ψ χ
Assertion rmoeqbii * x A ψ * x B χ

Proof

Step Hyp Ref Expression
1 rmoeqbii.1 A = B
2 rmoeqbii.2 ψ χ
3 1 eleq2i x A x B
4 3 2 anbi12i x A ψ x B χ
5 4 mobii * x x A ψ * x x B χ
6 df-rmo * x A ψ * x x A ψ
7 df-rmo * x B χ * x x B χ
8 5 6 7 3bitr4i * x A ψ * x B χ