Metamath Proof Explorer


Theorem rmoeqbii

Description: Equality inference for restricted at-most-one quantifier. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses rmoeqbii.1
|- A = B
rmoeqbii.2
|- ( ps <-> ch )
Assertion rmoeqbii
|- ( E* x e. A ps <-> E* x e. B ch )

Proof

Step Hyp Ref Expression
1 rmoeqbii.1
 |-  A = B
2 rmoeqbii.2
 |-  ( ps <-> ch )
3 1 eleq2i
 |-  ( x e. A <-> x e. B )
4 3 2 anbi12i
 |-  ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) )
5 4 mobii
 |-  ( E* x ( x e. A /\ ps ) <-> E* x ( x e. B /\ ch ) )
6 df-rmo
 |-  ( E* x e. A ps <-> E* x ( x e. A /\ ps ) )
7 df-rmo
 |-  ( E* x e. B ch <-> E* x ( x e. B /\ ch ) )
8 5 6 7 3bitr4i
 |-  ( E* x e. A ps <-> E* x e. B ch )