Description: Equality inference for restricted at-most-one quantifier. (Contributed by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rmoeqbii.1 | |- A = B |
|
rmoeqbii.2 | |- ( ps <-> ch ) |
||
Assertion | rmoeqbii | |- ( E* x e. A ps <-> E* x e. B ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoeqbii.1 | |- A = B |
|
2 | rmoeqbii.2 | |- ( ps <-> ch ) |
|
3 | 1 | eleq2i | |- ( x e. A <-> x e. B ) |
4 | 3 2 | anbi12i | |- ( ( x e. A /\ ps ) <-> ( x e. B /\ ch ) ) |
5 | 4 | mobii | |- ( E* x ( x e. A /\ ps ) <-> E* x ( x e. B /\ ch ) ) |
6 | df-rmo | |- ( E* x e. A ps <-> E* x ( x e. A /\ ps ) ) |
|
7 | df-rmo | |- ( E* x e. B ch <-> E* x ( x e. B /\ ch ) ) |
|
8 | 5 6 7 | 3bitr4i | |- ( E* x e. A ps <-> E* x e. B ch ) |