Description: Equality inference for restricted at-most-one quantifier. (Contributed by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rmoeqbii.1 | ⊢ 𝐴 = 𝐵 | |
rmoeqbii.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | ||
Assertion | rmoeqbii | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ∈ 𝐵 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoeqbii.1 | ⊢ 𝐴 = 𝐵 | |
2 | rmoeqbii.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | |
3 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
4 | 3 2 | anbi12i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) |
5 | 4 | mobii | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) |
6 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
7 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐵 𝜒 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) | |
8 | 5 6 7 | 3bitr4i | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ∈ 𝐵 𝜒 ) |