Metamath Proof Explorer


Theorem rmoeqbii

Description: Equality inference for restricted at-most-one quantifier. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses rmoeqbii.1 𝐴 = 𝐵
rmoeqbii.2 ( 𝜓𝜒 )
Assertion rmoeqbii ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥𝐵 𝜒 )

Proof

Step Hyp Ref Expression
1 rmoeqbii.1 𝐴 = 𝐵
2 rmoeqbii.2 ( 𝜓𝜒 )
3 1 eleq2i ( 𝑥𝐴𝑥𝐵 )
4 3 2 anbi12i ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜒 ) )
5 4 mobii ( ∃* 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃* 𝑥 ( 𝑥𝐵𝜒 ) )
6 df-rmo ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥𝐴𝜓 ) )
7 df-rmo ( ∃* 𝑥𝐵 𝜒 ↔ ∃* 𝑥 ( 𝑥𝐵𝜒 ) )
8 5 6 7 3bitr4i ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥𝐵 𝜒 )