Description: Equality inference for restricted at-most-one quantifier. (Contributed by GG, 1-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rmoeqbii.1 | ⊢ 𝐴 = 𝐵 | |
| rmoeqbii.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | ||
| Assertion | rmoeqbii | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ∈ 𝐵 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoeqbii.1 | ⊢ 𝐴 = 𝐵 | |
| 2 | rmoeqbii.2 | ⊢ ( 𝜓 ↔ 𝜒 ) | |
| 3 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
| 4 | 3 2 | anbi12i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) |
| 5 | 4 | mobii | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) |
| 6 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 7 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐵 𝜒 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) | |
| 8 | 5 6 7 | 3bitr4i | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ∈ 𝐵 𝜒 ) |