Metamath Proof Explorer


Theorem reueqi

Description: Equality inference for restricted existential uniqueness quantifier. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis reueqi.1 𝐴 = 𝐵
Assertion reueqi ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 reueqi.1 𝐴 = 𝐵
2 1 eleq2i ( 𝑥𝐴𝑥𝐵 )
3 2 anbi1i ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜓 ) )
4 3 eubii ( ∃! 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃! 𝑥 ( 𝑥𝐵𝜓 ) )
5 df-reu ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥𝐴𝜓 ) )
6 df-reu ( ∃! 𝑥𝐵 𝜓 ↔ ∃! 𝑥 ( 𝑥𝐵𝜓 ) )
7 4 5 6 3bitr4i ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐵 𝜓 )