Description: Equality inference for restricted existential uniqueness quantifier. (Contributed by GG, 1-Sep-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reueqi.1 | ⊢ 𝐴 = 𝐵 | |
Assertion | reueqi | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reueqi.1 | ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
3 | 2 | anbi1i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) |
4 | 3 | eubii | ⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) |
5 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
6 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) | |
7 | 4 5 6 | 3bitr4i | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 𝜓 ) |