Metamath Proof Explorer


Theorem reueqbii

Description: Equality inference for restricted existential uniqueness quantifier. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses reueqbii.1 𝐴 = 𝐵
reueqbii.2 ( 𝜓𝜒 )
Assertion reueqbii ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐵 𝜒 )

Proof

Step Hyp Ref Expression
1 reueqbii.1 𝐴 = 𝐵
2 reueqbii.2 ( 𝜓𝜒 )
3 1 eleq2i ( 𝑥𝐴𝑥𝐵 )
4 3 2 anbi12i ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜒 ) )
5 4 eubii ( ∃! 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃! 𝑥 ( 𝑥𝐵𝜒 ) )
6 df-reu ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥 ( 𝑥𝐴𝜓 ) )
7 df-reu ( ∃! 𝑥𝐵 𝜒 ↔ ∃! 𝑥 ( 𝑥𝐵𝜒 ) )
8 5 6 7 3bitr4i ( ∃! 𝑥𝐴 𝜓 ↔ ∃! 𝑥𝐵 𝜒 )