Metamath Proof Explorer


Theorem reueqbii

Description: Equality inference for restricted existential uniqueness quantifier. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypotheses reueqbii.1 A = B
reueqbii.2 ψ χ
Assertion reueqbii ∃! x A ψ ∃! x B χ

Proof

Step Hyp Ref Expression
1 reueqbii.1 A = B
2 reueqbii.2 ψ χ
3 1 eleq2i x A x B
4 3 2 anbi12i x A ψ x B χ
5 4 eubii ∃! x x A ψ ∃! x x B χ
6 df-reu ∃! x A ψ ∃! x x A ψ
7 df-reu ∃! x B χ ∃! x x B χ
8 5 6 7 3bitr4i ∃! x A ψ ∃! x B χ