Metamath Proof Explorer


Theorem rmoeqdv

Description: Formula-building rule for restricted at-most-one quantifier. Deduction form. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis rmoeqdv.1 φ A = B
Assertion rmoeqdv φ * x A ψ * x B ψ

Proof

Step Hyp Ref Expression
1 rmoeqdv.1 φ A = B
2 rmoeq1 A = B * x A ψ * x B ψ
3 1 2 syl φ * x A ψ * x B ψ