Metamath Proof Explorer


Theorem rmoeqi

Description: Equality inference for restricted at-most-one quantifier. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis rmoeqi.1 A = B
Assertion rmoeqi * x A ψ * x B ψ

Proof

Step Hyp Ref Expression
1 rmoeqi.1 A = B
2 1 eleq2i x A x B
3 2 anbi1i x A ψ x B ψ
4 3 mobii * x x A ψ * x x B ψ
5 df-rmo * x A ψ * x x A ψ
6 df-rmo * x B ψ * x x B ψ
7 4 5 6 3bitr4i * x A ψ * x B ψ