Metamath Proof Explorer


Theorem rmoeqi

Description: Equality inference for restricted at-most-one quantifier. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis rmoeqi.1 𝐴 = 𝐵
Assertion rmoeqi ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 rmoeqi.1 𝐴 = 𝐵
2 1 eleq2i ( 𝑥𝐴𝑥𝐵 )
3 2 anbi1i ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜓 ) )
4 3 mobii ( ∃* 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃* 𝑥 ( 𝑥𝐵𝜓 ) )
5 df-rmo ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥𝐴𝜓 ) )
6 df-rmo ( ∃* 𝑥𝐵 𝜓 ↔ ∃* 𝑥 ( 𝑥𝐵𝜓 ) )
7 4 5 6 3bitr4i ( ∃* 𝑥𝐴 𝜓 ↔ ∃* 𝑥𝐵 𝜓 )