Metamath Proof Explorer


Theorem rmoeqi

Description: Equality inference for restricted at-most-one quantifier. (Contributed by GG, 1-Sep-2025)

Ref Expression
Hypothesis rmoeqi.1
|- A = B
Assertion rmoeqi
|- ( E* x e. A ps <-> E* x e. B ps )

Proof

Step Hyp Ref Expression
1 rmoeqi.1
 |-  A = B
2 1 eleq2i
 |-  ( x e. A <-> x e. B )
3 2 anbi1i
 |-  ( ( x e. A /\ ps ) <-> ( x e. B /\ ps ) )
4 3 mobii
 |-  ( E* x ( x e. A /\ ps ) <-> E* x ( x e. B /\ ps ) )
5 df-rmo
 |-  ( E* x e. A ps <-> E* x ( x e. A /\ ps ) )
6 df-rmo
 |-  ( E* x e. B ps <-> E* x ( x e. B /\ ps ) )
7 4 5 6 3bitr4i
 |-  ( E* x e. A ps <-> E* x e. B ps )