Metamath Proof Explorer


Theorem rmoim

Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017)

Ref Expression
Assertion rmoim xAφψ*xAψ*xAφ

Proof

Step Hyp Ref Expression
1 df-ral xAφψxxAφψ
2 imdistan xAφψxAφxAψ
3 2 albii xxAφψxxAφxAψ
4 1 3 bitri xAφψxxAφxAψ
5 moim xxAφxAψ*xxAψ*xxAφ
6 df-rmo *xAψ*xxAψ
7 df-rmo *xAφ*xxAφ
8 5 6 7 3imtr4g xxAφxAψ*xAψ*xAφ
9 4 8 sylbi xAφψ*xAψ*xAφ