Metamath Proof Explorer


Theorem rmoun

Description: "At most one" restricted existential quantifier for a union implies the same quantifier on both sets. (Contributed by Thierry Arnoux, 27-Nov-2023)

Ref Expression
Assertion rmoun *xABφ*xAφ*xBφ

Proof

Step Hyp Ref Expression
1 mooran2 *xxAφxBφ*xxAφ*xxBφ
2 df-rmo *xABφ*xxABφ
3 elun xABxAxB
4 3 anbi1i xABφxAxBφ
5 andir xAxBφxAφxBφ
6 4 5 bitri xABφxAφxBφ
7 6 mobii *xxABφ*xxAφxBφ
8 2 7 bitri *xABφ*xxAφxBφ
9 df-rmo *xAφ*xxAφ
10 df-rmo *xBφ*xxBφ
11 9 10 anbi12i *xAφ*xBφ*xxAφ*xxBφ
12 1 8 11 3imtr4i *xABφ*xAφ*xBφ