Metamath Proof Explorer


Theorem rmyeq

Description: Y is one-to-one. (Contributed by Stefan O'Rear, 3-Oct-2014)

Ref Expression
Assertion rmyeq A2MNM=NAYrmM=AYrmN

Proof

Step Hyp Ref Expression
1 oveq2 a=bAYrma=AYrmb
2 oveq2 a=MAYrma=AYrmM
3 oveq2 a=NAYrma=AYrmN
4 zssre
5 frmy Yrm:2×
6 5 fovcl A2aAYrma
7 6 zred A2aAYrma
8 ltrmy A2aba<bAYrma<AYrmb
9 8 biimpd A2aba<bAYrma<AYrmb
10 9 3expb A2aba<bAYrma<AYrmb
11 1 2 3 4 7 10 eqord1 A2MNM=NAYrmM=AYrmN
12 11 3impb A2MNM=NAYrmM=AYrmN