Metamath Proof Explorer


Theorem eqord1

Description: A strictly increasing real function on a subset of RR is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ltord.1 x = y A = B
ltord.2 x = C A = M
ltord.3 x = D A = N
ltord.4 S
ltord.5 φ x S A
ltord.6 φ x S y S x < y A < B
Assertion eqord1 φ C S D S C = D M = N

Proof

Step Hyp Ref Expression
1 ltord.1 x = y A = B
2 ltord.2 x = C A = M
3 ltord.3 x = D A = N
4 ltord.4 S
5 ltord.5 φ x S A
6 ltord.6 φ x S y S x < y A < B
7 1 2 3 4 5 6 leord1 φ C S D S C D M N
8 1 3 2 4 5 6 leord1 φ D S C S D C N M
9 8 ancom2s φ C S D S D C N M
10 7 9 anbi12d φ C S D S C D D C M N N M
11 4 sseli C S C
12 4 sseli D S D
13 letri3 C D C = D C D D C
14 11 12 13 syl2an C S D S C = D C D D C
15 14 adantl φ C S D S C = D C D D C
16 5 ralrimiva φ x S A
17 2 eleq1d x = C A M
18 17 rspccva x S A C S M
19 16 18 sylan φ C S M
20 19 adantrr φ C S D S M
21 3 eleq1d x = D A N
22 21 rspccva x S A D S N
23 16 22 sylan φ D S N
24 23 adantrl φ C S D S N
25 20 24 letri3d φ C S D S M = N M N N M
26 10 15 25 3bitr4d φ C S D S C = D M = N