Metamath Proof Explorer


Theorem eqord1

Description: A strictly increasing real function on a subset of RR is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014)

Ref Expression
Hypotheses ltord.1 x=yA=B
ltord.2 x=CA=M
ltord.3 x=DA=N
ltord.4 S
ltord.5 φxSA
ltord.6 φxSySx<yA<B
Assertion eqord1 φCSDSC=DM=N

Proof

Step Hyp Ref Expression
1 ltord.1 x=yA=B
2 ltord.2 x=CA=M
3 ltord.3 x=DA=N
4 ltord.4 S
5 ltord.5 φxSA
6 ltord.6 φxSySx<yA<B
7 1 2 3 4 5 6 leord1 φCSDSCDMN
8 1 3 2 4 5 6 leord1 φDSCSDCNM
9 8 ancom2s φCSDSDCNM
10 7 9 anbi12d φCSDSCDDCMNNM
11 4 sseli CSC
12 4 sseli DSD
13 letri3 CDC=DCDDC
14 11 12 13 syl2an CSDSC=DCDDC
15 14 adantl φCSDSC=DCDDC
16 5 ralrimiva φxSA
17 2 eleq1d x=CAM
18 17 rspccva xSACSM
19 16 18 sylan φCSM
20 19 adantrr φCSDSM
21 3 eleq1d x=DAN
22 21 rspccva xSADSN
23 16 22 sylan φDSN
24 23 adantrl φCSDSN
25 20 24 letri3d φCSDSM=NMNNM
26 10 15 25 3bitr4d φCSDSC=DM=N