Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
rncoss
Next ⟩
dmcosseq
Metamath Proof Explorer
Ascii
Unicode
Theorem
rncoss
Description:
Range of a composition.
(Contributed by
NM
, 19-Mar-1998)
Ref
Expression
Assertion
rncoss
⊢
ran
⁡
A
∘
B
⊆
ran
⁡
A
Proof
Step
Hyp
Ref
Expression
1
dmcoss
⊢
dom
⁡
B
-1
∘
A
-1
⊆
dom
⁡
A
-1
2
df-rn
⊢
ran
⁡
A
∘
B
=
dom
⁡
A
∘
B
-1
3
cnvco
⊢
A
∘
B
-1
=
B
-1
∘
A
-1
4
3
dmeqi
⊢
dom
⁡
A
∘
B
-1
=
dom
⁡
B
-1
∘
A
-1
5
2
4
eqtri
⊢
ran
⁡
A
∘
B
=
dom
⁡
B
-1
∘
A
-1
6
df-rn
⊢
ran
⁡
A
=
dom
⁡
A
-1
7
1
5
6
3sstr4i
⊢
ran
⁡
A
∘
B
⊆
ran
⁡
A