Metamath Proof Explorer


Theorem rnep

Description: The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023)

Ref Expression
Assertion rnep ranE=V

Proof

Step Hyp Ref Expression
1 dfrn2 ranE=x|yyEx
2 nfab1 _xx|yyEx
3 nfcv _xV
4 abid xx|yyExyyEx
5 epel yExyx
6 5 exbii yyExyyx
7 neq0 ¬x=yyx
8 7 bicomi yyx¬x=
9 velsn xx=
10 9 bicomi x=x
11 10 notbii ¬x=¬x
12 6 8 11 3bitri yyEx¬x
13 velcomp xV¬x
14 13 bicomi ¬xxV
15 4 12 14 3bitri xx|yyExxV
16 2 3 15 eqri x|yyEx=V
17 1 16 eqtri ranE=V