Description: The range of the membership relation is the universal class minus the empty set. (Contributed by BJ, 26-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | rnep | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrn2 | |
|
2 | nfab1 | |
|
3 | nfcv | |
|
4 | abid | |
|
5 | epel | |
|
6 | 5 | exbii | |
7 | neq0 | |
|
8 | 7 | bicomi | |
9 | velsn | |
|
10 | 9 | bicomi | |
11 | 10 | notbii | |
12 | 6 8 11 | 3bitri | |
13 | velcomp | |
|
14 | 13 | bicomi | |
15 | 4 12 14 | 3bitri | |
16 | 2 3 15 | eqri | |
17 | 1 16 | eqtri | |