| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfrn2 |
|- ran _E = { x | E. y y _E x } |
| 2 |
|
nfab1 |
|- F/_ x { x | E. y y _E x } |
| 3 |
|
nfcv |
|- F/_ x ( _V \ { (/) } ) |
| 4 |
|
abid |
|- ( x e. { x | E. y y _E x } <-> E. y y _E x ) |
| 5 |
|
epel |
|- ( y _E x <-> y e. x ) |
| 6 |
5
|
exbii |
|- ( E. y y _E x <-> E. y y e. x ) |
| 7 |
|
neq0 |
|- ( -. x = (/) <-> E. y y e. x ) |
| 8 |
7
|
bicomi |
|- ( E. y y e. x <-> -. x = (/) ) |
| 9 |
|
velsn |
|- ( x e. { (/) } <-> x = (/) ) |
| 10 |
9
|
bicomi |
|- ( x = (/) <-> x e. { (/) } ) |
| 11 |
10
|
notbii |
|- ( -. x = (/) <-> -. x e. { (/) } ) |
| 12 |
6 8 11
|
3bitri |
|- ( E. y y _E x <-> -. x e. { (/) } ) |
| 13 |
|
velcomp |
|- ( x e. ( _V \ { (/) } ) <-> -. x e. { (/) } ) |
| 14 |
13
|
bicomi |
|- ( -. x e. { (/) } <-> x e. ( _V \ { (/) } ) ) |
| 15 |
4 12 14
|
3bitri |
|- ( x e. { x | E. y y _E x } <-> x e. ( _V \ { (/) } ) ) |
| 16 |
2 3 15
|
eqri |
|- { x | E. y y _E x } = ( _V \ { (/) } ) |
| 17 |
1 16
|
eqtri |
|- ran _E = ( _V \ { (/) } ) |