Metamath Proof Explorer


Theorem rneqd

Description: Equality deduction for range. (Contributed by NM, 4-Mar-2004)

Ref Expression
Hypothesis rneqd.1 φA=B
Assertion rneqd φranA=ranB

Proof

Step Hyp Ref Expression
1 rneqd.1 φA=B
2 rneq A=BranA=ranB
3 1 2 syl φranA=ranB