Metamath Proof Explorer


Theorem rngodm1dm2

Description: In a unital ring the domain of the first variable of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010) (New usage is discouraged.)

Ref Expression
Hypotheses rnplrnml0.1 H=2ndR
rnplrnml0.2 G=1stR
Assertion rngodm1dm2 RRingOpsdomdomG=domdomH

Proof

Step Hyp Ref Expression
1 rnplrnml0.1 H=2ndR
2 rnplrnml0.2 G=1stR
3 2 rngogrpo RRingOpsGGrpOp
4 eqid ranG=ranG
5 4 grpofo GGrpOpG:ranG×ranGontoranG
6 3 5 syl RRingOpsG:ranG×ranGontoranG
7 2 1 4 rngosm RRingOpsH:ranG×ranGranG
8 fof G:ranG×ranGontoranGG:ranG×ranGranG
9 8 fdmd G:ranG×ranGontoranGdomG=ranG×ranG
10 fdm H:ranG×ranGranGdomH=ranG×ranG
11 eqtr domG=ranG×ranGranG×ranG=domHdomG=domH
12 11 dmeqd domG=ranG×ranGranG×ranG=domHdomdomG=domdomH
13 12 expcom ranG×ranG=domHdomG=ranG×ranGdomdomG=domdomH
14 13 eqcoms domH=ranG×ranGdomG=ranG×ranGdomdomG=domdomH
15 10 14 syl H:ranG×ranGranGdomG=ranG×ranGdomdomG=domdomH
16 9 15 syl5com G:ranG×ranGontoranGH:ranG×ranGranGdomdomG=domdomH
17 6 7 16 sylc RRingOpsdomdomG=domdomH