Metamath Proof Explorer


Theorem rngoridm

Description: The unity element of a ring is an identity element for the multiplication. (Contributed by FL, 18-Apr-2010) (New usage is discouraged.)

Ref Expression
Hypotheses uridm.1 H=2ndR
uridm.2 X=ran1stR
uridm2.2 U=GIdH
Assertion rngoridm RRingOpsAXAHU=A

Proof

Step Hyp Ref Expression
1 uridm.1 H=2ndR
2 uridm.2 X=ran1stR
3 uridm2.2 U=GIdH
4 1 2 3 rngoidmlem RRingOpsAXUHA=AAHU=A
5 4 simprd RRingOpsAXAHU=A