Metamath Proof Explorer


Theorem rngorn1

Description: In a unital ring the range of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010) (New usage is discouraged.)

Ref Expression
Hypotheses rnplrnml0.1 H=2ndR
rnplrnml0.2 G=1stR
Assertion rngorn1 RRingOpsranG=domdomH

Proof

Step Hyp Ref Expression
1 rnplrnml0.1 H=2ndR
2 rnplrnml0.2 G=1stR
3 2 rngogrpo RRingOpsGGrpOp
4 grporndm GGrpOpranG=domdomG
5 3 4 syl RRingOpsranG=domdomG
6 1 2 rngodm1dm2 RRingOpsdomdomG=domdomH
7 5 6 eqtrd RRingOpsranG=domdomH