Metamath Proof Explorer


Theorem rp-4frege

Description: Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019)

Ref Expression
Assertion rp-4frege φ ψ φ χ φ χ

Proof

Step Hyp Ref Expression
1 rp-simp2-frege φ ψ φ χ φ ψ φ
2 rp-misc1-frege φ ψ φ χ φ ψ φ φ ψ φ χ φ χ
3 1 2 ax-mp φ ψ φ χ φ χ