Metamath Proof Explorer


Theorem rp-fakeinunass

Description: A special case where a mixture of intersection and union appears to conform to a mixed associative law. (Contributed by RP, 26-Feb-2020)

Ref Expression
Assertion rp-fakeinunass CAABC=ABC

Proof

Step Hyp Ref Expression
1 rp-fakeanorass xCxAxAxBxCxAxBxC
2 1 albii xxCxAxxAxBxCxAxBxC
3 dfss2 CAxxCxA
4 dfcleq ABC=ABCxxABCxABC
5 elun xABCxABxC
6 elin xABxAxB
7 6 orbi1i xABxCxAxBxC
8 5 7 bitri xABCxAxBxC
9 elin xABCxAxBC
10 elun xBCxBxC
11 10 anbi2i xAxBCxAxBxC
12 9 11 bitri xABCxAxBxC
13 8 12 bibi12i xABCxABCxAxBxCxAxBxC
14 13 albii xxABCxABCxxAxBxCxAxBxC
15 4 14 bitri ABC=ABCxxAxBxCxAxBxC
16 2 3 15 3bitr4i CAABC=ABC