Metamath Proof Explorer


Theorem rpge0

Description: A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008)

Ref Expression
Assertion rpge0 A+0A

Proof

Step Hyp Ref Expression
1 rpre A+A
2 rpgt0 A+0<A
3 0re 0
4 ltle 0A0<A0A
5 3 4 mpan A0<A0A
6 1 2 5 sylc A+0A