Metamath Proof Explorer


Theorem rrxval

Description: Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypothesis rrxval.r H=msup
Assertion rrxval IVH=toCPreHilfldfreeLModI

Proof

Step Hyp Ref Expression
1 rrxval.r H=msup
2 elex IVIV
3 oveq2 i=IfldfreeLModi=fldfreeLModI
4 3 fveq2d i=ItoCPreHilfldfreeLModi=toCPreHilfldfreeLModI
5 df-rrx ℝ↑=iVtoCPreHilfldfreeLModi
6 fvex toCPreHilfldfreeLModIV
7 4 5 6 fvmpt IVmsup=toCPreHilfldfreeLModI
8 2 7 syl IVmsup=toCPreHilfldfreeLModI
9 1 8 eqtrid IVH=toCPreHilfldfreeLModI