Metamath Proof Explorer
		
		
		
		Description:  3-variable restricted specialization, using implicit substitution.
       (Contributed by Scott Fenton, 10-Mar-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | rspc3dv.1 |  | 
					
						|  |  | rspc3dv.2 |  | 
					
						|  |  | rspc3dv.3 |  | 
					
						|  |  | rspc3dv.4 |  | 
					
						|  |  | rspc3dv.5 |  | 
					
						|  |  | rspc3dv.6 |  | 
					
						|  |  | rspc3dv.7 |  | 
				
					|  | Assertion | rspc3dv |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspc3dv.1 |  | 
						
							| 2 |  | rspc3dv.2 |  | 
						
							| 3 |  | rspc3dv.3 |  | 
						
							| 4 |  | rspc3dv.4 |  | 
						
							| 5 |  | rspc3dv.5 |  | 
						
							| 6 |  | rspc3dv.6 |  | 
						
							| 7 |  | rspc3dv.7 |  | 
						
							| 8 | 5 6 7 | 3jca |  | 
						
							| 9 | 1 2 3 | rspc3v |  | 
						
							| 10 | 8 4 9 | sylc |  |