Metamath Proof Explorer


Theorem rspc8v

Description: 8-variable restricted specialization, using implicit substitution. (Contributed by Scott Fenton, 20-Feb-2025)

Ref Expression
Hypotheses rspc8v.1 x=Aφχ
rspc8v.2 y=Bχθ
rspc8v.3 z=Cθτ
rspc8v.4 w=Dτη
rspc8v.5 p=Eηζ
rspc8v.6 q=Fζσ
rspc8v.7 r=Gσρ
rspc8v.8 s=Hρψ
Assertion rspc8v ARBSCTDUEVFWGXHYxRySzTwUpVqWrXsYφψ

Proof

Step Hyp Ref Expression
1 rspc8v.1 x=Aφχ
2 rspc8v.2 y=Bχθ
3 rspc8v.3 z=Cθτ
4 rspc8v.4 w=Dτη
5 rspc8v.5 p=Eηζ
6 rspc8v.6 q=Fζσ
7 rspc8v.7 r=Gσρ
8 rspc8v.8 s=Hρψ
9 1 4ralbidv x=ApVqWrXsYφpVqWrXsYχ
10 2 4ralbidv y=BpVqWrXsYχpVqWrXsYθ
11 3 4ralbidv z=CpVqWrXsYθpVqWrXsYτ
12 4 4ralbidv w=DpVqWrXsYτpVqWrXsYη
13 9 10 11 12 rspc4v ARBSCTDUxRySzTwUpVqWrXsYφpVqWrXsYη
14 5 6 7 8 rspc4v EVFWGXHYpVqWrXsYηψ
15 13 14 sylan9 ARBSCTDUEVFWGXHYxRySzTwUpVqWrXsYφψ