Metamath Proof Explorer


Theorem rspcdv2

Description: Restricted specialization, using implicit substitution. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses rspcdv2.1 φ x = A ψ χ
rspcdv2.2 φ A B
rspcdv2.3 φ x B ψ
Assertion rspcdv2 φ χ

Proof

Step Hyp Ref Expression
1 rspcdv2.1 φ x = A ψ χ
2 rspcdv2.2 φ A B
3 rspcdv2.3 φ x B ψ
4 2 1 rspcdv φ x B ψ χ
5 3 4 mpd φ χ