Metamath Proof Explorer


Theorem rspcsbela

Description: Special case related to rspsbc . (Contributed by NM, 10-Dec-2005) (Proof shortened by Eric Schmidt, 17-Jan-2007)

Ref Expression
Assertion rspcsbela ABxBCDA/xCD

Proof

Step Hyp Ref Expression
1 rspsbc ABxBCD[˙A/x]˙CD
2 sbcel1g AB[˙A/x]˙CDA/xCD
3 1 2 sylibd ABxBCDA/xCD
4 3 imp ABxBCDA/xCD