Metamath Proof Explorer


Theorem rspct

Description: A closed version of rspc . (Contributed by Andrew Salmon, 6-Jun-2011)

Ref Expression
Hypothesis rspct.1 xψ
Assertion rspct xx=AφψABxBφψ

Proof

Step Hyp Ref Expression
1 rspct.1 xψ
2 df-ral xBφxxBφ
3 eleq1 x=AxBAB
4 3 adantr x=AφψxBAB
5 simpr x=Aφψφψ
6 4 5 imbi12d x=AφψxBφABψ
7 6 ex x=AφψxBφABψ
8 7 a2i x=Aφψx=AxBφABψ
9 8 alimi xx=Aφψxx=AxBφABψ
10 nfv xAB
11 10 1 nfim xABψ
12 nfcv _xA
13 11 12 spcgft xx=AxBφABψABxxBφABψ
14 9 13 syl xx=AφψABxxBφABψ
15 2 14 syl7bi xx=AφψABxBφABψ
16 15 com34 xx=AφψABABxBφψ
17 16 pm2.43d xx=AφψABxBφψ