Metamath Proof Explorer


Theorem rspn0

Description: Specialization for restricted generalization with a nonempty class. (Contributed by Alexander van der Vekens, 6-Sep-2018) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion rspn0 AxAφφ

Proof

Step Hyp Ref Expression
1 n0 AxxA
2 df-ral xAφxxAφ
3 exim xxAφxxAxφ
4 ax5e xφφ
5 3 4 syl6com xxAxxAφφ
6 2 5 biimtrid xxAxAφφ
7 1 6 sylbi AxAφφ