Metamath Proof Explorer


Theorem s3eqd

Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016)

Ref Expression
Hypotheses s2eqd.1 φA=N
s2eqd.2 φB=O
s3eqd.3 φC=P
Assertion s3eqd φ⟨“ABC”⟩=⟨“NOP”⟩

Proof

Step Hyp Ref Expression
1 s2eqd.1 φA=N
2 s2eqd.2 φB=O
3 s3eqd.3 φC=P
4 1 2 s2eqd φ⟨“AB”⟩=⟨“NO”⟩
5 3 s1eqd φ⟨“C”⟩=⟨“P”⟩
6 4 5 oveq12d φ⟨“AB”⟩++⟨“C”⟩=⟨“NO”⟩++⟨“P”⟩
7 df-s3 ⟨“ABC”⟩=⟨“AB”⟩++⟨“C”⟩
8 df-s3 ⟨“NOP”⟩=⟨“NO”⟩++⟨“P”⟩
9 6 7 8 3eqtr4g φ⟨“ABC”⟩=⟨“NOP”⟩