Metamath Proof Explorer


Theorem sb5ALT

Description: Equivalence for substitution. Alternate proof of sb5 . This proof is sb5ALTVD automatically translated and minimized. (Contributed by Alan Sare, 21-Apr-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sb5ALT yxφxx=yφ

Proof

Step Hyp Ref Expression
1 equsb1 yxx=y
2 sban yxx=yφyxx=yyxφ
3 2 simplbi2com yxφyxx=yyxx=yφ
4 1 3 mpi yxφyxx=yφ
5 spsbe yxx=yφxx=yφ
6 4 5 syl yxφxx=yφ
7 hbs1 yxφxyxφ
8 simpr x=yφφ
9 8 a1i xx=yφx=yφφ
10 simpl x=yφx=y
11 10 a1i xx=yφx=yφx=y
12 sbequ1 x=yφyxφ
13 12 com12 φx=yyxφ
14 9 11 13 syl6c xx=yφx=yφyxφ
15 7 14 exlimexi xx=yφyxφ
16 6 15 impbii yxφxx=yφ