Metamath Proof Explorer


Theorem sb8iota

Description: Variable substitution in description binder. Compare sb8eu . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 18-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypothesis sb8iota.1 yφ
Assertion sb8iota ιx|φ=ιy|yxφ

Proof

Step Hyp Ref Expression
1 sb8iota.1 yφ
2 nfv wφx=z
3 2 sb8 xφx=zwwxφx=z
4 sbbi wxφx=zwxφwxx=z
5 1 nfsb ywxφ
6 equsb3 wxx=zw=z
7 nfv yw=z
8 6 7 nfxfr ywxx=z
9 5 8 nfbi ywxφwxx=z
10 4 9 nfxfr ywxφx=z
11 nfv wyxφx=z
12 sbequ w=ywxφx=zyxφx=z
13 10 11 12 cbvalv1 wwxφx=zyyxφx=z
14 equsb3 yxx=zy=z
15 14 sblbis yxφx=zyxφy=z
16 15 albii yyxφx=zyyxφy=z
17 3 13 16 3bitri xφx=zyyxφy=z
18 17 abbii z|xφx=z=z|yyxφy=z
19 18 unieqi z|xφx=z=z|yyxφy=z
20 dfiota2 ιx|φ=z|xφx=z
21 dfiota2 ιy|yxφ=z|yyxφy=z
22 19 20 21 3eqtr4i ιx|φ=ιy|yxφ