Metamath Proof Explorer


Theorem sbali

Description: Discard class substitution in a universal quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019)

Ref Expression
Hypothesis sbali.1 AV
Assertion sbali [˙A/x]˙xφxφ

Proof

Step Hyp Ref Expression
1 sbali.1 AV
2 nfa1 xxφ
3 1 2 sbcgfi [˙A/x]˙xφxφ