Metamath Proof Explorer


Theorem sbc8g

Description: This is the closest we can get to df-sbc if we start from dfsbcq (see its comments) and dfsbcq2 . (Contributed by NM, 18-Nov-2008) (Proof shortened by Andrew Salmon, 29-Jun-2011) (Proof modification is discouraged.)

Ref Expression
Assertion sbc8g AV[˙A/x]˙φAx|φ

Proof

Step Hyp Ref Expression
1 dfsbcq y=A[˙y/x]˙φ[˙A/x]˙φ
2 eleq1 y=Ayx|φAx|φ
3 df-clab yx|φyxφ
4 equid y=y
5 dfsbcq2 y=yyxφ[˙y/x]˙φ
6 4 5 ax-mp yxφ[˙y/x]˙φ
7 3 6 bitr2i [˙y/x]˙φyx|φ
8 1 2 7 vtoclbg AV[˙A/x]˙φAx|φ