Metamath Proof Explorer


Theorem sbcalf

Description: Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition. (Contributed by Giovanni Mascellani, 29-May-2019)

Ref Expression
Hypothesis sbcalf.1 _yA
Assertion sbcalf [˙A/x]˙yφy[˙A/x]˙φ

Proof

Step Hyp Ref Expression
1 sbcalf.1 _yA
2 sb8v yφzzyφ
3 2 sbcbii [˙A/x]˙yφ[˙A/x]˙zzyφ
4 sbcal [˙A/x]˙zzyφz[˙A/x]˙zyφ
5 nfs1v yzyφ
6 1 5 nfsbcw y[˙A/x]˙zyφ
7 nfv z[˙A/x]˙φ
8 sbequ12r z=yzyφφ
9 8 sbcbidv z=y[˙A/x]˙zyφ[˙A/x]˙φ
10 6 7 9 cbvalv1 z[˙A/x]˙zyφy[˙A/x]˙φ
11 3 4 10 3bitri [˙A/x]˙yφy[˙A/x]˙φ