Metamath Proof Explorer


Theorem sbcalfi

Description: Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses sbcalfi.1 _ y A
sbcalfi.2 [˙A / x]˙ φ ψ
Assertion sbcalfi [˙A / x]˙ y φ y ψ

Proof

Step Hyp Ref Expression
1 sbcalfi.1 _ y A
2 sbcalfi.2 [˙A / x]˙ φ ψ
3 1 sbcalf [˙A / x]˙ y φ y [˙A / x]˙ φ
4 2 albii y [˙A / x]˙ φ y ψ
5 3 4 bitri [˙A / x]˙ y φ y ψ