Metamath Proof Explorer


Theorem sbcalfi

Description: Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019)

Ref Expression
Hypotheses sbcalfi.1 _yA
sbcalfi.2 [˙A/x]˙φψ
Assertion sbcalfi [˙A/x]˙yφyψ

Proof

Step Hyp Ref Expression
1 sbcalfi.1 _yA
2 sbcalfi.2 [˙A/x]˙φψ
3 1 sbcalf [˙A/x]˙yφy[˙A/x]˙φ
4 2 albii y[˙A/x]˙φyψ
5 3 4 bitri [˙A/x]˙yφyψ