Metamath Proof Explorer


Theorem sbcan

Description: Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016) (Revised by NM, 17-Aug-2018)

Ref Expression
Assertion sbcan [˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ

Proof

Step Hyp Ref Expression
1 sbcex [˙A/x]˙φψAV
2 sbcex [˙A/x]˙ψAV
3 2 adantl [˙A/x]˙φ[˙A/x]˙ψAV
4 dfsbcq2 y=Ayxφψ[˙A/x]˙φψ
5 dfsbcq2 y=Ayxφ[˙A/x]˙φ
6 dfsbcq2 y=Ayxψ[˙A/x]˙ψ
7 5 6 anbi12d y=Ayxφyxψ[˙A/x]˙φ[˙A/x]˙ψ
8 sban yxφψyxφyxψ
9 4 7 8 vtoclbg AV[˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ
10 1 3 9 pm5.21nii [˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ