Metamath Proof Explorer


Theorem sbccsb2

Description: Substitution into a wff expressed in using substitution into a class. (Contributed by NM, 27-Nov-2005) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbccsb2 [˙A / x]˙ φ A A / x x | φ

Proof

Step Hyp Ref Expression
1 sbcex [˙A / x]˙ φ A V
2 elex A A / x x | φ A V
3 abid x x | φ φ
4 3 sbcbii [˙A / x]˙ x x | φ [˙A / x]˙ φ
5 sbcel12 [˙A / x]˙ x x | φ A / x x A / x x | φ
6 csbvarg A V A / x x = A
7 6 eleq1d A V A / x x A / x x | φ A A / x x | φ
8 5 7 bitrid A V [˙A / x]˙ x x | φ A A / x x | φ
9 4 8 bitr3id A V [˙A / x]˙ φ A A / x x | φ
10 1 2 9 pm5.21nii [˙A / x]˙ φ A A / x x | φ