Metamath Proof Explorer


Theorem sbcel2

Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbcel2 [˙A / x]˙ B C B A / x C

Proof

Step Hyp Ref Expression
1 sbcel12 [˙A / x]˙ B C A / x B A / x C
2 csbconstg A V A / x B = B
3 2 eleq1d A V A / x B A / x C B A / x C
4 1 3 bitrid A V [˙A / x]˙ B C B A / x C
5 sbcex [˙A / x]˙ B C A V
6 5 con3i ¬ A V ¬ [˙A / x]˙ B C
7 noel ¬ B
8 csbprc ¬ A V A / x C =
9 8 eleq2d ¬ A V B A / x C B
10 7 9 mtbiri ¬ A V ¬ B A / x C
11 6 10 2falsed ¬ A V [˙A / x]˙ B C B A / x C
12 4 11 pm2.61i [˙A / x]˙ B C B A / x C