Metamath Proof Explorer


Theorem sbcel2

Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbcel2 [˙A/x]˙BCBA/xC

Proof

Step Hyp Ref Expression
1 sbcel12 [˙A/x]˙BCA/xBA/xC
2 csbconstg AVA/xB=B
3 2 eleq1d AVA/xBA/xCBA/xC
4 1 3 bitrid AV[˙A/x]˙BCBA/xC
5 sbcex [˙A/x]˙BCAV
6 5 con3i ¬AV¬[˙A/x]˙BC
7 noel ¬B
8 csbprc ¬AVA/xC=
9 8 eleq2d ¬AVBA/xCB
10 7 9 mtbiri ¬AV¬BA/xC
11 6 10 2falsed ¬AV[˙A/x]˙BCBA/xC
12 4 11 pm2.61i [˙A/x]˙BCBA/xC