Metamath Proof Explorer


Theorem sbceqg

Description: Distribute proper substitution through an equality relation. (Contributed by NM, 10-Nov-2005) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion sbceqg AV[˙A/x]˙B=CA/xB=A/xC

Proof

Step Hyp Ref Expression
1 dfsbcq2 z=AzxB=C[˙A/x]˙B=C
2 dfsbcq2 z=AzxyB[˙A/x]˙yB
3 2 abbidv z=Ay|zxyB=y|[˙A/x]˙yB
4 dfsbcq2 z=AzxyC[˙A/x]˙yC
5 4 abbidv z=Ay|zxyC=y|[˙A/x]˙yC
6 3 5 eqeq12d z=Ay|zxyB=y|zxyCy|[˙A/x]˙yB=y|[˙A/x]˙yC
7 nfs1v xzxyB
8 7 nfab _xy|zxyB
9 nfs1v xzxyC
10 9 nfab _xy|zxyC
11 8 10 nfeq xy|zxyB=y|zxyC
12 sbab x=zB=y|zxyB
13 sbab x=zC=y|zxyC
14 12 13 eqeq12d x=zB=Cy|zxyB=y|zxyC
15 11 14 sbiev zxB=Cy|zxyB=y|zxyC
16 1 6 15 vtoclbg AV[˙A/x]˙B=Cy|[˙A/x]˙yB=y|[˙A/x]˙yC
17 df-csb A/xB=y|[˙A/x]˙yB
18 df-csb A/xC=y|[˙A/x]˙yC
19 17 18 eqeq12i A/xB=A/xCy|[˙A/x]˙yB=y|[˙A/x]˙yC
20 16 19 bitr4di AV[˙A/x]˙B=CA/xB=A/xC