Metamath Proof Explorer


Theorem sbcex2

Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion sbcex2 [˙A/y]˙xφx[˙A/y]˙φ

Proof

Step Hyp Ref Expression
1 sbcex [˙A/y]˙xφAV
2 sbcex [˙A/y]˙φAV
3 2 exlimiv x[˙A/y]˙φAV
4 dfsbcq2 z=Azyxφ[˙A/y]˙xφ
5 dfsbcq2 z=Azyφ[˙A/y]˙φ
6 5 exbidv z=Axzyφx[˙A/y]˙φ
7 sbex zyxφxzyφ
8 4 6 7 vtoclbg AV[˙A/y]˙xφx[˙A/y]˙φ
9 1 3 8 pm5.21nii [˙A/y]˙xφx[˙A/y]˙φ