Metamath Proof Explorer


Theorem sbcie

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004)

Ref Expression
Hypotheses sbcie.1 AV
sbcie.2 x=Aφψ
Assertion sbcie [˙A/x]˙φψ

Proof

Step Hyp Ref Expression
1 sbcie.1 AV
2 sbcie.2 x=Aφψ
3 2 sbcieg AV[˙A/x]˙φψ
4 1 3 ax-mp [˙A/x]˙φψ