Metamath Proof Explorer


Theorem sbcieg

Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005) Avoid ax-10 , ax-12 . (Revised by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypothesis sbcieg.1 x = A φ ψ
Assertion sbcieg A V [˙A / x]˙ φ ψ

Proof

Step Hyp Ref Expression
1 sbcieg.1 x = A φ ψ
2 df-sbc [˙A / x]˙ φ A x | φ
3 1 elabg A V A x | φ ψ
4 2 3 bitrid A V [˙A / x]˙ φ ψ