Metamath Proof Explorer


Theorem sbciegft

Description: Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf .) (Contributed by NM, 10-Nov-2005) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Assertion sbciegft A V x ψ x x = A φ ψ [˙A / x]˙ φ ψ

Proof

Step Hyp Ref Expression
1 sbc5 [˙A / x]˙ φ x x = A φ
2 biimp φ ψ φ ψ
3 2 imim2i x = A φ ψ x = A φ ψ
4 3 impd x = A φ ψ x = A φ ψ
5 4 alimi x x = A φ ψ x x = A φ ψ
6 19.23t x ψ x x = A φ ψ x x = A φ ψ
7 6 biimpa x ψ x x = A φ ψ x x = A φ ψ
8 5 7 sylan2 x ψ x x = A φ ψ x x = A φ ψ
9 8 3adant1 A V x ψ x x = A φ ψ x x = A φ ψ
10 1 9 syl5bi A V x ψ x x = A φ ψ [˙A / x]˙ φ ψ
11 biimpr φ ψ ψ φ
12 11 imim2i x = A φ ψ x = A ψ φ
13 12 com23 x = A φ ψ ψ x = A φ
14 13 alimi x x = A φ ψ x ψ x = A φ
15 19.21t x ψ x ψ x = A φ ψ x x = A φ
16 15 biimpa x ψ x ψ x = A φ ψ x x = A φ
17 14 16 sylan2 x ψ x x = A φ ψ ψ x x = A φ
18 17 3adant1 A V x ψ x x = A φ ψ ψ x x = A φ
19 sbc6g A V [˙A / x]˙ φ x x = A φ
20 19 3ad2ant1 A V x ψ x x = A φ ψ [˙A / x]˙ φ x x = A φ
21 18 20 sylibrd A V x ψ x x = A φ ψ ψ [˙A / x]˙ φ
22 10 21 impbid A V x ψ x x = A φ ψ [˙A / x]˙ φ ψ