Metamath Proof Explorer


Theorem sbcim1

Description: Distribution of class substitution over implication. One direction of sbcimg that holds for proper classes. (Contributed by NM, 17-Aug-2018) Avoid ax-10 , ax-12 . (Revised by SN, 26-Oct-2024)

Ref Expression
Assertion sbcim1 [˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ

Proof

Step Hyp Ref Expression
1 sbcex [˙A/x]˙φψAV
2 dfsbcq2 y=Ayxφψ[˙A/x]˙φψ
3 dfsbcq2 y=Ayxφ[˙A/x]˙φ
4 dfsbcq2 y=Ayxψ[˙A/x]˙ψ
5 3 4 imbi12d y=Ayxφyxψ[˙A/x]˙φ[˙A/x]˙ψ
6 2 5 imbi12d y=Ayxφψyxφyxψ[˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ
7 sbi1 yxφψyxφyxψ
8 6 7 vtoclg AV[˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ
9 1 8 mpcom [˙A/x]˙φψ[˙A/x]˙φ[˙A/x]˙ψ