Metamath Proof Explorer


Theorem sbco4lem

Description: Lemma for sbco4 . It replaces the temporary variable v with another temporary variable w . (Contributed by Jim Kingdon, 26-Sep-2018) (Proof shortened by Wolf Lammen, 12-Oct-2024) Avoid ax-11 . (Revised by SN, 3-Sep-2025)

Ref Expression
Assertion sbco4lem x v y x v y φ x w y x w y φ

Proof

Step Hyp Ref Expression
1 sbequ v = w v y φ w y φ
2 1 sbbidv v = w y x v y φ y x w y φ
3 2 cbvsbv x v y x v y φ x w y x w y φ