Metamath Proof Explorer


Theorem sbco4lem

Description: Lemma for sbco4 . It replaces the temporary variable v with another temporary variable w . (Contributed by Jim Kingdon, 26-Sep-2018) (Proof shortened by Wolf Lammen, 12-Oct-2024)

Ref Expression
Assertion sbco4lem xvyxvyφxwyxwyφ

Proof

Step Hyp Ref Expression
1 sbcom2 yxvwwyφvwyxwyφ
2 1 sbbii xvyxvwwyφxvvwyxwyφ
3 sbco2vv vwwyφvyφ
4 3 2sbbii xvyxvwwyφxvyxvyφ
5 sbco2vv xvvwyxwyφxwyxwyφ
6 2 4 5 3bitr3i xvyxvyφxwyxwyφ