Metamath Proof Explorer


Theorem sbcssg

Description: Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012) (Proof shortened by Alexander van der Vekens, 23-Jul-2017)

Ref Expression
Assertion sbcssg AV[˙A/x]˙BCA/xBA/xC

Proof

Step Hyp Ref Expression
1 sbcal [˙A/x]˙yyByCy[˙A/x]˙yByC
2 sbcimg AV[˙A/x]˙yByC[˙A/x]˙yB[˙A/x]˙yC
3 sbcel2 [˙A/x]˙yByA/xB
4 sbcel2 [˙A/x]˙yCyA/xC
5 3 4 imbi12i [˙A/x]˙yB[˙A/x]˙yCyA/xByA/xC
6 2 5 bitrdi AV[˙A/x]˙yByCyA/xByA/xC
7 6 albidv AVy[˙A/x]˙yByCyyA/xByA/xC
8 1 7 bitrid AV[˙A/x]˙yyByCyyA/xByA/xC
9 dfss2 BCyyByC
10 9 sbcbii [˙A/x]˙BC[˙A/x]˙yyByC
11 dfss2 A/xBA/xCyyA/xByA/xC
12 8 10 11 3bitr4g AV[˙A/x]˙BCA/xBA/xC